attention. He had commenced his observations in Nicaragua with the advantage of some previous knowledge of the subject, and was therefore prepared to direct his inquiries to many points that required elucidation before the Darwinian explanation of these phenomena can be said to be established. Thus we find recorded his experiments on living insects which are the objects of mimicry by other forms, as to their distastefulness as food to insectivorous animals. Whenever he observes an instance of mimetic resemblance, he reasons out its causes and conditions instead of merely stating it. One of the most striking eases he mentions is that of a green leaf-like locust, which almost alone of all other living things stood its ground amid a destroying host of foraging ants. It stood immovable whilst the ants ran over its legs, and allowed him to pick it up and replace it amongst the ants without making an effort to escape. It might easily have flown away; but it would then only have fallen into as great a danger; for the numerous birds that accompany the army-ants are ever on the outlook for any insect that may fly up. Another ease is that of a Longicorn beetle, belonging to a genus the species of which resemble various other objects : those members of the genus which live on dead wood are coloured so as to resemble liehen-stained bark; but one species (Desmiphora fasciculata) resembles a brown hairy eaterpillar; and this he found only on leaves.

Mr. Belt's numerous observations on birds, as well as those on the few mammals he met with, are marked by the same originality and suggestiveness. His charming descriptions of the habits and haunts of humming-birds will attract many readers besides ornithologists. The use of the expanded white tail of the *Florisuga mellivora* in courtship (p. 112), which he fortunately had opportunities of observing, will be a welcome fact to the partisans of the Sexual Selection hypothesis. The volume, besides, contains abundant contributions to the general physical geography of the country (his remarks on the retrocession of the frontier of the virgin forest being especially worthy of attention) and to the ethnology of Nicaragua and neighbouring countries.

PROCEEDINGS OF LEARNED SOCIETIES.

ROYAL SOCIETY.

June 19, 1873.—William Spottiswoode, M.A., Treasurer and Vice-President, in the Chair.

"On the Structure and Development of the Skull in the Pig (Sus scrofa)." By W. K. PARKER, F.R.S.

I have for some years past determined to concentrate my attention on some one type of Mammalian Skull, so as to be able to present to the Royal Society a paper similar to those which have already appeared on other Vertebrate Skulls. I was led to work out this MEDIUM TYPE, and not a more generalized form, such as the Guinea-pig (see "On the Development of the Frog's Skull," Phil. Trans. 1871, p. 203), through the circumstance of an offer from my friend Mr. Charles Stewart to put some seventy embryos of the Common Pig into my possession. In the present communication I have had the invaluable help of advice and oversight from Professor Huxley; whilst the labour of my hands has been lightened by my son, Mr. T. J. Parker, who prepared for me all the more delicate sections. The embryos ranged in size from two thirds, or less, of an inch in length, with the head only equal in size to a *sweet pea*, whilst the head of the largest specimen was the size of that of the Common Squirrel. To these I have added yonng pigs at birth, and have taken as the last stage the skull of a halfgrown individual.

The most important results of the present investigation may be stated as follows :---

1. In a pig-embryo, in which the length of the body did not exceed two thirds of an inch, and four postoral clefts were present, the cranio-facial skeleton was found to consist of :-(a) the noto-chord, terminating by a rounded end immediately behind the pituitary body.

(b) On each side of the notochord, but below it, there is a cartilaginons plate, which in front ends by a rounded extremity on a level with the apex of the notochord, while behind it widens out and ends at the free lower margin of the occipital foramen. These two plates, taken together, constitute the "investing mass" of Rathke. In this stage they send up no prolongations around the occipital foramen; in other words, the rudiment of the basioccipital exists, but not of the exoccipital or superoccipital.

(c) The large oval auditory capsules lie on each side of the anterior half of the investing mass, with which they are but imperfectly united : there is no indication of the stapes at this stage.

(d) The *trabecular* or first pair of preoral visceral arches inclose a lyre-shaped pituitary space; they are closely applied together in front of this space, and, coalescing, give rise to an azygous prænasal rostrum. They are distinct from one another and the investing mass.

(e) The *pterygo-palatine* or second pair of visceral arches lie in the maxillo-palatine processes, and are therefore subocular in position. Each is a sigmoid bar of nascent cartilage, the incurved anterior end of which hies behind the internal nasal aperture, while the posterior extremity is curved outwards about the level of the angle of the mouth. The pterygo-palatine cartilages are perfectly free and distinct from the first preoral and from the first *postoral* arch.

(f) The mandibular or first pair of postoral visceral arches are stout continuous rods of cartilage which lie in the first visceral arch behind the month. The ventral or distal ends of these arches are not yet in contact; the dorsal or proximal end of each is somewhat pointed and sharply incurved, pushing inwards the membrane which closes the first visceral cleft and is the rudiment of the membrana tympani.

(g) The hyoid or second pair of postoral arches are in this stage extremely similar to the first pair, with which they are parallel. They are stout sigmoid rods of cartilage, which are separated at their distal ends, present an incurved process at their opposite extremities, and are not segmented.

(h) The *thyro-hyal* or third postoral arches, which correspond with the first branchial of the branchiate vertebrata, are represented by two short cartilaginous rods which lie on each side of the larvax.

(i) The olfactory sacs are surrounded by a cartilaginous capsule, which has coalesced below with the trabecula of its side; while, within, the mucous membrane lining the capsule presents elevations which indicate the position of the future turbinal outgrowth of the capsule.

In this stage the posterior nares are situated at the anterior part of the oral cavity, as in the Amphibia, and the roof of the mouth is formed by the floor of the skull, the palatal plate of the maxillæ and palatine bones being foreshadowed by mere folds. The outer end of the cleft between the first and second præoral arches is the rudiment of the lachrymal duct, while its inner end is the hinder nasal aperture. The gape of the mouth is the cleft between the second præoral and first postoral arch. The auditory passage, representing the Eustachian tube, tympanum, and external auditory meatus, is the cleft between the first and second postoral arches. The proximal end of the mandibular arch, therefore, lies in the front wall, and the hyoid in the hinder wall of the auditory passage.

2. In an embryo pig, an inch in length, (a) the notochord is still visible; (b) the investing mass, the halves of which are completely confluent, has become thoroughly chondrified, and is continued upwards at each side of the occipital foramen to form an arch over it.

'(c) The auditory capsules are still distinct from the investing mass, and a plug on the outer cartilaginous wall of each has become marked off as the stapes.

(d) The hinder ends of the trabecular arches have coalesced in front of the pituitary body, but they are not yet confluent with the investing mass.

(e) The pterygo-palatine rods have increased in size; they have not become hyaline cartilage, but are beginning to ossify in their centre.

(f) In the mandibular arch the proximal end has become somewhat bulbous, and is recognizable as the head of the malleus, whilst the incurved process, still more prominent than before, is the *manubrium mallei*. The rest of the arch is Meckel's cartilage; outside this a mass of tissue appears, which is converted into cartilage, rapidly ossifies, and eventually becomes the ramus of the mandible. (g) The proximal end of the hyoidean arch, similarly enlarging and articulating with the corresponding part of the mandibular arch, becomes the incus, the incurved process attaching itself to the onter surface of the stapes and becoming the long process of the incus. The incus, thus formed out of the proximal end of the hyoidean arch, becomes separated from the rest of the arch by conversion of part of the arch into fibrous tissue, and by the moving downwards and backwards of the proper hyoid portion of the arch. A nodule of cartilage left in the fibrous connecting band becomes a styliform *interhyal* cartilage, while the proximal end of the detached arch becomes the *stylo-hyal*.

(h) The *thyro-hyals* have merely increased in size and density; they closely embrace the larynx by their upper ends.

(i) The olfactory capsules are well chondrified; their descending inner edges have coalesced with each other and, below, with the trabeenlæ to form the great median septum: the turbinal outgrowths are apparent.

In this stage, the alisphenoids and orbito-sphenoids appear as chondrifications of the walls of the skull, quite separate from the investing mass and from the trabeculæ.

The floor of the pitnitary space chondrifies independently of the trabeculæ and investing mass, but serves to unite these four cartilaginous tracts.

3. In an embryo pig, $1\frac{1}{3}$ inch in length, (a, b, c) the primordial cranium is completely constituted as a cartilaginous whole, formed by the coalescence of the investing mass and its exoccipital and superoccipital prolongations, the modified trabeculæ, the subpituitary cartilage, the anditory capsules, and alisphenoidal and orbitosphenoidal cartilages, and the olfactory capsules. The notochord is yet to be seen extending in the middle line from the hinder wall of the pituitary fossa (now the "dorsum sellæ") to the posterior edge of the occipital region.

(d) The trabecular arches form the sides of the sella turcica, the præsphenoid, and the base of the septum between the olfactory capsules; in front, where they form the azygons "prænasal," they are developed backwards as "recurrent bands," elongations of their free recurved "cornua."

(e) The pterygo-palatine arches, still increasing in size, but not chondrifying, are rapidly ossifying; they are half-coiled laminæ bounding the posterior nasal passages.

(f) The mandibular arch and the rudimental ramus have become solid cartilage, and the latter is ossifying as the dentary; the distal part of each mandibular rod unites with its fellow for some distance.

(g) The hyoid arches are each fully segmented as incus, with its "orbicular" head, interhyal, stylo-hyal, and cerato-hyal.

(h) The thyro-hyals are merely larger and denser.

(i) The olfactory capsules have the turbinal outgrowths all marked out as alinasal, nasal, and upper, middle, and lower turbinals.

4. In pigs of larger size the form and proportions of the parts of the cranium become greatly altered, and ossification takes place on an extensive scale, but no new structure is added.

5. It follows from these facts that the mammalian skull, in an early embryonic condition, is strictly comparable with that of an Osseous Fish, a Frog, or a Bird at a like period of development, consisting as it does of

(a) A cartilaginous basic anial plate embracing the notochord, and, like it, stopping behind the pituitary body.

(b) Paired cartilaginous arches, of which two are præoral, while the rest are postoral.

(c) A pair of cartilaginous auditory capsules.

(d) A pair of cartilaginous nasal capusles.

Further, that in the Mammal, as in the other Vertebrata the development of the skull of which has been examined, the basicranial plate grows up as an arch over the occipital region of the skull, and coalesces with the auditory capsules, laterally, to give rise to the primordial skeleton of the occipital, periotic, and basisphenoidal regions of the skull. The trabeculæ become fused together, and, uniting with the olfactory capsules, give rise to the præsphenoidal and ethmoidal parts of the cranium; and the moieties of the skull thus resulting from the metamorphosis of totally different morphological elements become united and give rise to the primordial cranium.

As in the Salmon and Fowl, the second pair of præoral arches give rise to the pterygo-palatine apparatus; in the Frog this arch is late in appearance, and is never distinct from the trabecular and mandibular bars, serving as a conjugational band between them. The mandibular arch, which in the Salmon becomes converted into Meckel's cartilage, the os articulare, the os quadratum, and the os metapterygoideum, in the Frog into Meckel's cartilage and the quadrate cartilage (which early becomes confluent with the periotic capsule), in the Bird into Meckel's cartilage, the os articulare, and the os quadratum (which articulates movably with the periotic capsule), in the Pig is metamorphosed into Meckel's cartilage and the malleus, which is loosely connected with the tegmen tympani, an outgrowth of the periotic capsule.

Meckel's cartilage persists in the Fish and in the Amphibia, but disappears early in the Bird, and still earlier in the Mammal. The permanent ossifications of the mandible are all membrane-bones in Fish, Frog, and Fowl, but in the Mammal (exceptionally) the ramus has a cartilaginous foundation. The hyoidean becomes closely united with the mandibular arch, and then segmented, in the Fish, into the hyo-mandibular, the stylo-hyal, cerato-hyal, and hypohyal-the hyo-mandibular, or proximal segment, articulating with the outer wall of the periotic, and many of the segments of the arch becoming dislocated.

In the Frog, the hyoid also becomes segmented, but only after extensive coalescence with the mandibular arch. The proximal segment becomes the suprastapedial (hyo-mandibular) with its ex-18

Ann. & Mag. N. Hist. Ser. 4. Vol. xiii.

trastapedial process, and, extending inwards as mediostapedial and interstapedial, articulates with the stapes, developed by segmentation from the outer wall of the auditory capsule. The stylo-hyal is dislocated and becomes connected with the auditory capsule below the stapes (opisthotic region).

In the Bird, the hyoidean arch remains distinct from the man-Whilst in its primordial condition it coalesces by its dibular. incurved apex with the auditory capsule in front of the promontory, before the stapedial plug is segmented. It then chondrifies as three distinct cartilages-an incudal, a stylo-hyal, and, distally, a cerato-hval. The stapes becomes free from the auditory capsule, but remains united with the cartilaginous part of the incus (mediostapedial); the ascending part is largely fibrous (suprastapedial), and the part loosely attached to the mandibular arch is the elon-gated extrastapedial. The short stylo-hyal afterwards coalesces with the body of the upper or incudal segment by an aftergrowth of cartilage (the interhyal tract); a long membranous space intervenes between it and the glossal piece (cerato-hyal.) Thus the "columella" of the Bird is formed of one periotic and three hyoidean segments.

In the Pig, the hyoidean arch is distinct, but articulates closely with the mandibular; its upper segment (hyo-mandibular) is converted into the incus, and becomes connected with the stapes. The stylo-hyal is dislocated and coalesces with the opisthotic region of the auditory capsule.

December 18, 1873.—Joseph Dalton Hooker, C.B., President, in the Chair.

"On the Nervous System of Actinia."—Part I. By Professor P. MARTIN DUNCAN, M.B. Lond., F.R.S., &c.

After noticing the investigations of previous anatomists in the histology of the chromatophores, the work of Schneider and Rötteken on these supposed organs of special sense is examined and criticised.

Agreeing with Rötteken in his description, some further information is given respecting the nature of the bacillary layer and the minute anatomy of the elongated cells called "cones" by that author. The position and nature of the pigment-cells is pointed out, and also the peculiarities of the tissues they environ. It is shown that the large refractile cells, which, according to Rötteken, are situated between the bacilli and the cones, are not invariably in that position, but that bacilli, cones, and cells are often found separate. They are parts of the ectothelium, and when conjoined enable light to affect the nervous system more readily than when they are separate. Further information is given respecting the fusiform nerve-cells and small fibres noticed by Rötteken in the tissue beneath the cones; and the discovery of united ganglion-like cells and a diffused plexiform arrangement of nerve is asserted. The probability of a continuous plexus round the *Actinia* and beneath each chromatophore is suggested, and the physiological action of the structures in relation to light is explained.

The minute structure of the muscular fibres and their attached fibrous tissue in the base of *Actinia* is noticed; and the nervous system in that region is asserted to consist of a plexus beneath the endothelium, in which are fusiform cells and fibres like sympathetic nerve-fibrils. Moreover, between the muscular layers there is a continuation of this plexus, whose ultimate fibrils pass obliquely over the muscular fibres, and either dip between or are lost on them.

The other parts of the Actinia are under the examination of the author, but their details are not sufficiently advanced for publication. The nervous system, so far as it is examined, consists of isolated fusiform cells with small ends (Rötteken), and of fusiform and spherical cells which communicate with each other and with a diffused plexus. The plexus at the base is areolar; and its ultimate fibres are swollen here and there, the whole being of a pale grey colour.

MISCELLANEOUS.

Occurrence of Gigantic Cuttlefishes on the Coast of Newfoundland. By A. E. VERRILL.

CONSIDERABLE popular interest has been excited by several articles that have recently been published and extensively circulated in the newspapers of Canada and the United States, in regard to the appearance of gigantie "squids" on the Newfoundland coast. Having been so fortunate as to obtain, through the kindness of Professor S. F. Baird, the jaws and other parts of two of these creatures, and, through the courtesy of Dr. J. W. Dawson, photographs of portions of two other specimens, I have thought it worth while to bring together, at this time, the main facts respecting the several specimens that have been seen or captured recently, so far as I have been able to collate them, reserving for a future article the full descriptions and figures of the jaws and other portions now in my possession.

We now have reliable information concerning five different examples of these monsters that have appeared within a short period at Newfoundland.

1. A specimen found floating at the surface, at the Grand Banks, in October 1871, by Captain Campbell, of the schooner 'B. D. Haskins,' of Gloucester, Mass. It was taken on board, and part of it used for bait. Dr. A. S. Packard has given, in the 'American Naturalist,'